Visualization techniques for spatial probability density function data
نویسندگان
چکیده
منابع مشابه
Visualization techniques for spatial probability density function data
Novel visualization methods are presented for spatial probability density function data. These are spatial datasets, where each pixel is a random variable, and has multiple samples which are the results of experiments on that random variable. We use clustering as a means to reduce the information contained in these datasets; and present two different ways of interpreting and clustering the data...
متن کاملA new probability density function in earthquake occurrences
Although knowing the time of the occurrence of the earthquakes is vital and helpful, unfortunately it is still unpredictable. By the way there is an urgent need to find a method to foresee this catastrophic event. There are a lot of methods for forecasting the time of earthquake occurrence. Another method for predicting that is to know probability density function of time interval between earth...
متن کاملBest Probability Density Function for Random Sampled Data
The maximum entropy method is a theoretically sound approach to construct an analytical form for the probability density function (pdf) given a sample of random events. In practice, numerical methods employed to determine the appropriate Lagrange multipliers associated with a set of moments are generally unstable in the presence of noise due to limited sampling. A robust method is presented tha...
متن کاملA new approach for data visualization problem
Data visualization is the process of transforming data, information, and knowledge into visual form, making use of humans’ natural visual capabilities which reveals relationships in data sets that are not evident from the raw data, by using mathematical techniques to reduce the number of dimensions in the data set while preserving the relevant inherent properties. In this paper, we formulated d...
متن کاملProbability Density Function Measurement
We report experimental results on the acceleration component probability distribution function at R λ = 690 to probabilities of less than 10 −7. This is an improvement of more than an order of magnitude over past measurements and allows us to conclude that the fourth moment converges and the flatness is approximately 55. We compare our probability distribution to those predicted by several mode...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Data Science Journal
سال: 2004
ISSN: 1683-1470
DOI: 10.2481/dsj.3.153